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1. Abstract 
 

We consider quantum error-correcting codes over alphabets of arbitrary size. We generalize 
quantum stabilizer codes and develop Calderbank-Shor-Steane construction over quantum systems 
of arbitrary dimensions using the group structure of alphabets. We also develop a methodology 
systematically conjoining error-correcting codes into a new class of error-correcting codes. With the 
help of these methods we give several ways to construct quantum maximum distance separable 
(MDS) codes and present many families of quantum MDS codes with parameters 
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2. Introduction 
 

The computational power of quantum computers has already been shown through several 
efficient quantum algorithms [1,2,3]. After Deutsch and Jozsa [1] designed the first quantum 
algorithm to demonstrate an advantage of quantum computers over classical computers, Shor [2] 
constructed quantum polynomial-time algorithms for the integer factoring problem and the discrete 
logarithm problem, and Grover [3] constructed a quantum algorithm that can find a particular item 
in )( NO  time when an unstructured list of N  items are given. In order for these powerful 
algorithms to be successfully executed the purity of quantum states should be preserved during the 
process of computation. Unfortunately, quantum systems are always susceptible to the interaction 
with environments and so it is necessary to devise methods to correct operational errors and to 
control decoherence for reliable quantum computation and communication. The first effort toward 
this was made by Shor who showed that it is possible to correct errors by using a redundant 
quantum register and presented a nine-qubit code [4]. Since then many binary quantum error-
correcting codes have been developed [5,6,7,8,9]. Calderbank and Shor [5], and Steane [6] invented 
an efficient procedure, so-called Calderbank-Shor-Steane (CSS) construction, of constructing binary 
quantum codes from special families of binary classical codes. In general, a quantum code can be 
represented by a common eigenspace of a set of linear operators acting on quantum systems and this 
representation is called a quantum stabilizer code [10]. Quantum stabilizer codes are closely related 
with classical self-orthogonal codes with respect to the symplectic inner product [11,12,13]. The 
necessary and sufficient condition to correct quantum errors was given by Knill and Laflamme [14] 
(see also [10,15]). Knill also provided a group representation of a non-binary unitary error basis 
[16,17]. The first non-binary code is a q]]3,1,5[[  code for a positive integer q  that was constructed 
by using the multiplicative group character [18,19]. It was also shown that quantum stabilizer codes 
over finite fields can be constructed from classical self-orthogonal codes with respect to the 
symplectic inner product [20,21]. Through the generalization of the binary CSS construction to 
finite fields quantum Reed-Solomon (RS) codes were obtained from classical RS codes [22,23]. 
Quantum twisted codes [24] and quantum Reed-Muller (RM) codes [25] were derived from 
classical twisted Bose-Chaudhuri-Hocquenghem (BCH) codes and classical RM codes, respectively.  
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For reliable transmission of quantum information, quantum codes need to be robust against 
operational errors and decoherence caused by environments. It is desirable to design error-
correcting codes with as large distances as possible. It is because an error induces perturbation on 
the positions of codewords in a code space, and the farther the codewords, the more chance to 
correct the error. However, the distances of quantum error-correcting codes are bounded by the 
quantum Singleton bound [14,20]. To be more precise, an [[ , , ]]qn k d  quantum error-correcting code 
with distance d  that encodes k  q -ary quantum systems into  n  q -ary quantum systems should 
satisfy )1(2 −≥− dkn , which is a quantum analogue of the Singleton bound, 1−≥− dkn  for an 
[ , , ]qn k d  classical error-correcting code which is a q -ary classical error-correcting code of length 
n , dimension k  and distance d . A quantum error-correcting code that has the maximal distance 
saturating the quantum Singleton bound is called a quantum maximum distance separable (MDS) 
code and is most robust against errors for given n  and k . Up to now several families of non-binary 
quantum MDS codes have been developed such as quantum twisted codes with parameters 
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some s  [26,27]. It is noted that all known quantum MDS codes were constructed over finite fields 
except a [[5,1,3]]q  code. 

Most of the previous non-binary quantum codes are based on finite fields. However, the 
dimensions of quantum systems to encode quantum information do not have to be a power of a 
prime. Thus it is necessary to consider quantum codes over alphabets of arbitrary size. To 
circumvent the difficulty in dealing with composite alphabets, we utilize an abelian group structure 
on alphabets instead of the conventional finite field structure. We label the basis states of a quantum 
system by elements in an abelian group and construct a unitary operator basis consisting of 
translation and phase-rotation operators, which can be seen as a natural generalization of the Pauli 
spin operators acting on qubits. Using the group structure of alphabets we exploit quantum stabilizer 
codes over quantum systems of which dimensions are composite numbers and show that quantum 
stabilizer codes over composite alphabets are related to classical self-orthogonal codes with respect 
to the symplectic inner product. We also develop CSS construction over composite alphabets. The 
CSS construction gives a systematic way to construct quantum codes from classical ones. We also 
construct the direct sum of error-correcting codes, which we call a coadunate code, to give rise to a 
error-correcting code with a new parameter, which plays an essential role in constructing error-
correcting codes over composite alphabets from error-correcting codes over finite fields. Actually, 
error-correcting codes with the same length can be joined to comprise an error-correcting code over 
the direct sum of the alphabets, which is accomplished by conjoining heterogeneous codewords by 
components. The generalized CSS construction and the coadunate method can be used to construct 
quantum MDS codes over composite alphabets. Indeed, we obtain 
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3. Objectives 
 
(1) Construction of quantum error-correcting codes over alphabets of arbitrary size 

Building unitary operator bases for the set of linear operators acting on quantum systems of 
arbitrary dimension, we generalize the structure of stabilizer codes and develop the Calderbank-
Shor-Steane (CSS) construction. 

(2) Invention of classical and quantum coadunate error-correcting codes 
Conjoining error-correcting codes over Galois fields, we construct classical and quantum 
coadunate codes over composite alphabets. 

(3) Construction of quantum maximum distance separable (MDS) codes 
Using the CSS construction and the direct sum method, we construct new families of quantum 
MDS codes over composite alphabets. 

 
 
4. Research Accomplishments 
 

The original goals were 
 

(1) Finding non-binary error bases for quantum systems of prime-power dimension, 
(2) Development of the CSS construction over Galois fields of odd characteristics, 
(3) Extension of a hierarchical structure of classical MDS codes, and 
(4) Construction of quantum MDS codes based on Reed-Solomon codes. 
 

Fist of all, we accomplished all the original goals and took a step forward. We removed the 
restriction on the number of alphabets, which are used in labeling the basis of quantum systems, and 
contrived coadunate codes, which is useful in the construction of quantum MDS codes over 
composite alphabets. Furthermore, we attained many new families of classical and quantum (MDS) 
codes as well as the aimed codes. 

 
Our research accomplishments are summarized as follows:  
 

(1) We built a unitary operator basis for the set of linear operators acting on quantum systems of 
which dimensions are composite numbers.  

(2) We generalized quantum stabilizer codes over alphabets of arbitrary size. 
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(3) We developed the CSS construction over composite alphabets to give a systematic way to 
construct quantum error-correcting codes from classical error-correcting codes. 

(4) We contrived classical and quantum coadunate codes over composite alphabets by conjoining 
error-correcting codes over finite fields. 

(5) We constructed infinitely many quantum MDS codes using our CSS construction and coadunate 
method. 

 
 
5. Significance of Findings to the Field 
 
(1) Removal of the restriction on the number of alphabets 
(2) Analysis of coadunate MDS codes 
(3) New families of classical and quantum MDS codes over composite alphabets 
 
 

6. Application Areas 
 
(1) Realization of quantum computers 

A practical prototype of quantum computers has not yet been established, and the dimension of 
physical systems comprising a quantum register is still undetermined and may not be a power of 
a prime. On this account it is necessary to contrive a method constructing general quantum 
error-correcting codes over composite alphabets. 

(2) Reliable quantum information processing 
In order for quantum information to be kept pure or to be transmitted reliably through noisy 
channels, quantum error-correcting codes are required to have as large distances as possible. 
Because Quantum MDS codes have maximal distances, they are most suited for this purpose 
and are practically important. Our approach comprehends most of the previous methods based 
on Galois fields and gives broad families of quantum MDS codes. 

(3) Quantum cryptography, especially quantum secret sharing 
Quantum error-correcting codes are closely related with quantum secret sharing protocols and 
can be used in cryptographic schemes to share secret quantum information. 
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Quantum Maximum Distance Separable Codes over
Alphabets of Arbitrary Size∗
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Seoul 151-744, Korea.
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Abstract. We consider quantum error-correcting codes over alphabets of arbitrary sizes. Using the
structure of commutative rings on alphabets we generalize quantum stabilizer codes and extend the
Calderbank-Shor-Steane construction over quantum systems of composite dimensions. We also present
a method conjoining error-correcting codes into a maximum distance separable code.

Keywords: Quantum stabilizer codes, CSS construction, quantum maximum distance separable codes

1 Introduction

Codes meeting the Singleton bound with equality are
traditionally called maximum distance separable (MDS)
codes [1] and similarly quantum codes saturating the
quantum Singleton bound [2, 3] are called quantum max-
imum distance separable (QMDS) codes. A series of
work to construct QMDS codes has been performed
[4, 5, 3, 6, 7, 8, 9] and most of them are constructed
over finite fields. We consider QMDS codes over alpha-
bets of arbitrary sizes. To compose an error basis over
a composite alphabet, we endow an alphabet with the
structure of a commutative ring and generalize quantum
stabilizer and Calderbank-Shor-Steane (CSS) codes. We
present a method to combine QMDS codes over Galois
fields into a QMDS code over a composite alphabet.

2 Quantum Codes over Composite Al-
phabets

To label the basis states of q-dimensional quantum
system H, we use an alphabet A = ⊕l

j=1Aj with
Aj = Zmj

pj and q = pm1
1 pm2

2 · · · pml

l , where pj ’s are dis-
tinct primes for j = 1, 2, . . . , l. Let α = (αijk) ∈ An

be composed of an element αijk ∈ Zpj where the in-
dices i, j, and k represent the i-th component of An,
j-th component of A = ⊕l

j=1Aj , and the k-th com-
ponent of Aj = Zmj

pj , respectively, for i = 1, 2, . . . , n,
j = 1, 2, . . . , l, and k = 1, 2, . . . , mj . We define uni-
tary operators Uα and Vβ by Uα|χ〉 = |χ− α〉 and
Vβ |χ〉 = 〈〈β, χ〉〉|χ〉 for α, β, χ ∈ An, where 〈〈α, β〉〉 =∏l

j=1 ω
〈α(j),β(j)〉
pj and 〈α(j), β(j)〉 =

∑n
i=1

∑mj

k=1 αijkβijk.
Then B = {Eα,β = UαVβ : α, β ∈ An} forms a uni-
tary basis for the set of linear operators acting on Hn,
which can be seen as an extension of a unitary basis in
[10]. We note that Eα,βEγ,δ = 〈〈β, γ〉〉Eα+γ,β+δ and
Eα,βEγ,δ = 〈〈α, δ〉〉〈〈β, γ〉〉Eγ,δEα,β . Thus Eα,β and Eγ,δ

commute if and only if 〈〈α, δ〉〉〈〈β, γ〉〉 = 1. Due to the
Chinese remainder theorem, we have one more equivalent
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condition that 〈α(j), δ(j)〉 − 〈β(j), γ(j)〉 ≡ 0 (mod pj) for
all j. When a classical code in An ⊕ An = (A ⊕ A)n

satisfies this condition, we say that it is self-orthogonal
with respect to the symplectic inner product, where
the symplectic inner product on A ⊕ A is defined by
〈〈α, δ〉〉〈〈β, γ〉〉 for (α, β), (γ, δ) ∈ A ⊕ A. As usual, we
can relate an element (α, β) of C to an element Eα,β of
a stabilizer group S.

Theorem 1 (Stabilizer Codes) There exists a classical
code C over A ⊕ A which is self-orthogonal with respect
to the symplectic inner product if and only if there exists
a quantum stabilizer code HS over A.

It is also possible to construct CSS codes over A in a
similar way to those over finite fields in [11, 12, 13, 7].

Theorem 2 (CSS Construction) Let C1 be a classical
code with parameter [n, k1, d1]q and C2 be a subcode of
C1 with parameter [n, k2, d2]q. Let C be the subspace of
Hn spanned by the orthonormal set

{
|w̄〉 =

1√
qk2

∑

v∈C2

|v + w〉 : w̄ ∈ C1/C2

}
.

Then C is an [[n, k1 − k2, d = min{d1, d
⊥
2 }]]q quan-

tum code, where d⊥2 is the distance of the dual code
C⊥2 of C2 and C⊥2 = {α ∈ An : 〈α(j), β(j)〉 ≡ 0
(mod pj) for all β ∈ C2 and all j}.

By Theorem 2 we can generate a QMDS code from
two MDS codes C1 and C2 such that k1 + k2 = n. In-
deed, we obtain [[pm +1, k, (pm−k+3)/2]]pm and [[2m +
2, 2m − 4, 4]]2m QMDS codes from doubly-extended and
triply-extended Reed-Solomon (RS) codes, respectively.
Moreover, an [[n = p

mj

j + aj , k, (n − k + 2)/2]]Ql
j=1 p

mj
j

QMDS code comes from RS codes over composite alpha-
bets.

3 QMDS Codes

We can construct a quantum code over a composite
alphabet by conjoining quantum codes with the same
length, regardless of their dimensions and distances. The
following lemma is an extension of the method in [3].



Lemma 3 (Coadunate Quantum Codes) If there ex-
ist ((n,Kj , dj))qj codes for j = 1, 2, . . . , l, then there
also exists an ((n,

∏l
j=1 Kj , d))Ql

j=1 qj
code where d =

min {d1, d2, . . . , dl}.

This construction is also applicable to classical codes
similarly. Using Lemma 3 we can derive a necessary and
sufficient condition for a quantum coadunate code to be
QMDS.

Theorem 4 (Coadunate QMDS Codes) Suppose that
an ((n,

∏l
j=1 Kj , d))Ql

j=1 qj
code C is constructed by

((n, Kj , dj))qj
codes Cj over Aj for j = 1, 2, . . . , l. C

is QMDS if and only if Cj’s are all QMDS and satisfy
that K1 = K2 = · · · = Kl and d1 = d2 = · · · = dl.

Some examples of coadunate QMDS codes constructed
by Theorem 4 are listed in Table 1. QMDS codes with pa-
rameters (B), (C), (D) and (E) are constructed by merg-
ing quantum codes in [4, 6, 8, 9] with themselves, respec-
tively, and QMDS codes with the rest parameters are
the conjunctions of heterogeneous QMDS codes which
are quantum RS codes or QMDS codes in [4, 6, 8, 9].

Quantum puncturing [3] and shortening [14] over finite
fields, which can be generalized over composite alpha-
bets, give QMDS codes with shortened lengths, which,
however, are not always guaranteed. The conjoining
method can be another complementary solution to con-
struct QMDS codes with shortened lengths.
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Quantum Maximum Distance Separable Codes over
Alphabets of Arbitrary Size

Jinsoo Kim∗, Jeongwoon Choi†, and Dong Pyo Chi†

Abstract
We consider quantum error-correcting codes over alphabets of arbitrary

size. Using the structure of commutative rings on alphabets we generalize
quantum stabilizer codes and extend the Calderbank-Shor-Steane construction
over quantum systems of composite dimensions. We also present a method con-
joining error-correcting codes into a maximum distance separable code. More-
over, we construct quantum maximum distance separable codes, for example,
with parameters [[pm + a, k, (pm + a− k + 2)/2]]pm , [[p2c − s, k, (p2c − s− k +
2)/2]]pm for some −1 ≤ s ≤ p2c and c|m, [[p2m/3−s, k, (p2m/3−s−k+2)/2]]pm

for some −1 ≤ s ≤ p2m/3, [[pc + a, k, (pc + a − k + 2)/2]]pm for some c ≤ m,
[[n = p

mj

j + aj , k, (n − k + 2)/2]]Ql
j=1 p

mj
j

, and so forth, where p and pj are

primes and −1 ≤ a, aj ≤ 2.

1 Introduction

Quantum systems are always susceptible to the interaction with surroundings and
thus it is necessary to correct operational errors and to control decoherence caused by
environments for reliable quantum computation and communication. The first effort
toward this was made by Shor [1] who showed that it is possible to correct errors by
using redundant quantum registers and presented a nine-qubit error-correcting code.
Since then, many binary quantum error-correcting codes that can be constructed
from classical error-correcting codes have been developed [2, 3, 4, 5, 6]. The neces-
sary and sufficient condition for correcting quantum errors was set up by Knill and
Laflamme [7] (see also [8, 9]). For reliable transmission of quantum information,
quantum codes need to be robust against operational errors and decoherence caused
by environments. It is desirable to design quantum error-correcting codes that have
as large distance as possible. However, the distance is restricted by the quantum
Singleton bound [7, 10]. A quantum code saturating this bound is called a quantum
maximum distance separable (QMDS) code. Several QMDS codes have been devel-
oped so far [11, 12, 13, 14, 15, 16]. All binary QMDS codes have been discovered
and they have parameters [[n, n, 1]]2, [[n, n− 2, 2]]2, [[5, 1, 3]]2, and [[6, 0, 4]]2 [11].

∗School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-
744, Korea. E-mail: jkim@ee.snu.ac.kr

†School of Mathematical Science, Seoul National University, Seoul 151-742, Korea.
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Knill [17, 18] provided a group representation of a non-binary unitary operator
basis for quantum errors. The first non-binary quantum codes are a [[5, 1, 3]]q code,
which is QMDS, and a [[9, 1, 3]]q code for a positive integer q and they were con-
structed by using the multiplicative group character [19, 12]. In general, a quantum
code can be represented by a common eigenspace of a set of linear operators acting
on quantum systems and this representation is called a quantum stabilizer code [8].
Quantum stabilizer codes are closely related to classical self-orthogonal codes with
respect to the symplectic inner product [20, 21, 11]. Quantum stabilizer codes over
finite fields can also be constructed from classical self-orthogonal codes with respect
to the symplectic inner product [10, 22]. Calderbank and Shor [2], and Steane [3]
provided very efficient procedure, so-called Calderbank-Shor-Steane (CSS) construc-
tion, for the construction of binary quantum codes from special families of binary
classical codes. Through the extension of the binary CSS construction to finite fields
[23, 14], quantum Reed-Solomon (QRS) codes [24, 14] and quantum Reed-Muller
(QRM) codes [16] were obtained from classical Reed-Solomon (RS) and Reed-Muller
(RM) codes, respectively. QRS codes with parameters [[pm− 1, k, (pm− k + 1)/2]]pm

and [[pm, k, (pm − k + 2)/2]]pm are QMDS [14], and QRM codes with parameters
[[p2m, p2m−2ν +2, ν +2]]pm and [[(ν +1)pm, (ν +1)pm−2ν−2, ν +2]]mp , which is ob-
tained by puncturing for 0 ≤ ν ≤ pm−2, are QMDS [16]. In the symplectic geometry,
quantum twisted codes were developed from twisted Bose-Chaudhuri-Hocquenghem
(BCH) codes which are also known as RS subfield subcodes [13]. Quantum twisted
codes with parameters [[p2m + 1, p2m − 3, 3]]pm and [[p2m, p2m − 4, 3]]pm are QMDS.
QMDS codes with parameters [[n, k, (n−k +2)/2]]pm and [[p2m− s, k, (p2m− s−k +
2)/2]]pm for some s were constructed by using the hermitian inner product [15].

In this paper, we consider error-correcting codes for quantum systems of com-
posite dimension. We construct a unitary operator basis by using the structure of
a commutative ring with identity, and generalize the quantum stabilizer construc-
tion and the CSS construction over alphabets of arbitrary size. As an example,
we construct [[pm + 1, k, (pm + 3 − k)/2]]pm quantum doubly-extended RS codes
and [[2m + 2, 2m − 4, 4]]2m quantum triply-extended RS codes by the CSS construc-
tion from doubly-extended RS (DERS) and triply-extended RS (TERS) codes, re-
spectively. We also introduce a method to comprise a quantum error-correcting
code over the direct sum of alphabets by conjoining heterogeneous codewords by
components, and present a necessary and sufficient condition for a quantum code
thus constructed to be QMDS. Indeed, infinitely many families of QMDS codes
can be generated by this method. For example, QMDS codes with parameters
[[n, n, 1]]2m(n ≥ 1), [[n, n − 2, 2]]2m (n even ≥ 2), [[5, 1, 3]]2m , and [[6, 0, 4]]2m are
attained from binary QMDS codes. The conjunction of non-binary QMDS codes in
[13, 14, 15, 16] produce QMDS codes with parameters [[p2c−s, k, (p2c−s−k+2)/2]]pm

and [[(ν +1)pc, (ν +1)pc−2ν−2, ν +2]]pm for −1 ≤ s ≤ p2c, 0 ≤ ν ≤ pc−2, and c|m.
We also obtain QMDS codes with parameters [[p2m/3− s, k, (p2m/3− s− k + 2)/2]]pm

for some −1 ≤ s ≤ p2m/3, [[pc + a, pc + a − 2d + 2, d]]pm , [[n = (ν + 1)pm1
1 =

pm2
2 +a, k, (n−k+2)/2]]pm1

1 p
m2
2

for 0 ≤ ν ≤ pm1
1 , [[n = p

mj

j +aj, k, (n+2−k)/2]]Ql
j=1 p

mj
j

,

and so on, where p and pj are primes and −1 ≤ a, aj ≤ 2. Some more examples are
listed in Table 2 of Section 3.1.
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This paper is organized as follows. In Section 2 we compose an error basis over
a commutative ring with identity and generalize quantum stabilizer codes and CSS
codes. Section 3 is devoted to the construction of QMDS codes. We introduce a
method to combine codes over Galois fields into a code over a composite alphabet
and present a necessary and sufficient condition for the resulting code to be MDS.
We also extend puncturing and shortening over composite alphabets. We conclude
the paper in Section 4.

2 Non-binary Codes over Composite Alphabets

This section begins with the construction of a basis for linear operators acting on
quantum systems of arbitrary dimensions. For this purpose we equip an alphabet
with the structure of a commutative ring with identity. Based on the error basis we
generalize quantum stabilizer codes and CSS construction over composite alphabets.

2.1 Error Basis

Classical and quantum error-correcting codes defined over finite fields have efficient
encoding and decoding schemes due to rich field structure. Although codes over
group or ring might be less efficient than those over finite fields [25], they are useful
in dealing with q-ary quantum systems when q is not restricted to a power of a prime.
In this section, we construct an operational error basis on q-ary quantum systems for
any positive integer q. Pauli operators play a role of unitary operator basis for the
set of linear operators acting on binary quantum systems. Using the group character,
the operator basis was generalized over Galois field GF(pm) by Ashikhmin and Knill
[22]. Although there exists another operator basis over GF(p) provided by Rains
[10], we generalize the Ashikhmin and Knill’s method to construct an operator basis
over composite alphabets by using a commutative ring with identity.

For a positive integer q we denote by H the q-dimensional complex Hilbert space
describing a q-ary quantum system Cq with its orthonormal basis {|a〉} of which
index a is chosen from an alphabet A with q letters. To compose an error basis over
A, we endow A with the structure of a commutative ring with identity. We regard A
as ⊕l

j=1Zqj
= Zq1 ⊕Zq2 ⊕ · · · ⊕Zql

and identify a ∈ A with (a1, a2, . . . , al) ∈ ⊕l
j=1Zqj

where q = q1q2 · · · ql and Zn = {0, 1, . . . , n−1} is a ring of integers modulo n. Under
this relation we will write |a〉 ≡ |a1, a2, . . . , al〉 = |a1〉 ⊗ |a2〉 ⊗ · · · ⊗ |al〉. We define a
weighted inner product on A by 〈a, b〉q =

∑l
j=1 ajbj q̂j for a, b ∈ A where q̂j = q/qj.

To construct a basis for End(H) consisting of all endomorphisms on H, we will make
use of a symmetric bicharacter of A defined by

ω〈a,b〉q
q =

l∏
j=1

ωajbj
qj

(1)

for a, b ∈ A where ωq = e2πι/q and ωqj
= e2πι/qj are primitive q and qj-th roots

of unity, respectively. Especially when b = 1 = (1, 1, . . . , 1), we will write ω
〈a〉q
q ≡

ω
〈a,1〉q
q =

∏l
j=1 ω

aj
qj .
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We define two kinds of unitary operators by

Ua|x〉 = |x− a〉 and Vb|x〉 = ω〈b,x〉qq |x〉 (2)

for a, b, x ∈ A. We remark that this is a natural generalization of the Pauli spin
operators σx and σz acting on binary quantum systems, and that when A = Zq

these are merely Ua =
∑q−1

x=0 |x−a〉〈x| and Vb =
∑q−1

x=0 ωxb
q |x〉〈x|. Since UaUb = Ua+b,

VaVb = Va+b, and UaVb = ω
〈a,b〉q
q VbUa, we have

(UaVb)(UcVd) = ω〈a,d〉q−〈b,c〉q
q (UcVd)(UaVb)

and

tr(UaVb) =

{
0 for (a, b) 6= (0, 0),

q for (a, b) = (0, 0).

Hence the set {UaVb : a, b ∈ A} forms an orthogonal basis for End(H) under the
trace inner product 〈A,B〉 = tr(A†B) for A,B ∈ End(H). Especially when q is an
odd prime, every nonidentity operator UaVb is of order q since U q

a = I, V q
b = I, and

(UaVb)
q = ω

−〈a,b〉q(q−1)q/2
q (Ua)

q(Vb)
q = I. To sum up, we have the following theorem.

Theorem 2.1. The set B = {UaVb : a, b ∈ A} consisting of q2 unitary operators is
an orthogonal basis for End(H) with respect to the trace inner product. If q is an
odd prime number, then every nonidentity element of B has order q.

Sometimes it is convenient to consider an alphabet as a direct sum of finite
fields. We first consider the case when q = pm for a prime p. To represent symbols
for an orthogonal basis for q-dimensional Hilbert space, we will identify A with a
commutative ring Zm

p = Z⊕m
p instead of a Galois field GF(pm). Using the unitary

operators in (2) we can obtain operators UaVb = (Ua1Vb1)⊗ (Ua2Vb2)⊗· · ·⊗ (UamVbm)
for a = (a1, a2, . . . , am), b = (b1, b2, . . . , bm) ∈ Zm

p . Then the set {UaVb : a, b ∈ Zm
p }

forms an orthogonal basis for End(H) by Theorem 2.1. This basis used to construct
quantum error-correcting codes over finite fields in [22].

For a positive integer q we utilize its unique prime factorization q = pm1
1 · · · pml

l

where pj’s are distinct prime numbers. To label basis states of H, we use an alphabet
A = ⊕l

j=1Aj where Aj = Zmj
pj for j = 1, 2, . . . , l. Furthermore, we symbolize the

basis states for a tensor product Hn = H⊗n of H using the elements in An. For a =
(aijk) ∈ An, the element aijk ∈ Zpj

is the i-th component of An, j-th component of
A = ⊕l

j=1Aj, and the k-th component of Aj = Zmj
pj for i = 1, 2, . . . , n, j = 1, 2, . . . , l,

and k = 1, 2, . . . , mj. For convenience’ sake, we introduce notations a(i) = (aijk)j,k ∈
A and a(j) = (aijk)i,k ∈ An

j . By (2) unitary operators on Hn can be constructed by

Ea,b = (Ua(1)Vb(1))⊗ (Ua(2)Vb(2))⊗ · · · ⊗ (Ua(n)Vb(n))

= (Ua(1)
Vb(1)

)⊗ (Ua(2)
Vb(2)

)⊗ · · · ⊗ (Ua(l)
Vb(l)

).

Since tr(A ⊗ B) = trA trB, nonidentity operators Ea,b have trace zero and thus
are orthogonal to each other under the trace inner product. Therefore we have the
following theorem.
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Corollary 2.1. The set B = {Ea,b : a,b ∈ An} consisting of unitary operators is a
basis for End(Hn).

We remark that the operator basis B over a commutative ring with identity is an
extension of the operator basis over a finite field in [22].

2.2 Stabilizer Codes

Quantum stabilizer codes can be constructed over composite alphabets based on the
basis B in Corollary 2.1 and they can be represented by classical self-orthogonal
codes with respect to a weighted symplectic inner product.

The set E =
{

ω
〈a〉q
q Ea,b : a ∈ A and a,b ∈ An

}
is a group of order q2np1p2 · · · pl.

Let S be an abelian subgroup of E , and HS be a common eigenspace of all elements
in S with eigenvalue 1, that is, |ψ〉 ∈ HS if and only if M |ψ〉 = |ψ〉 for all M ∈ S.
Then HS is called a quantum stabilizer code, and S is called a stabilizer group
of HS because S preserves HS . We remark that any other common eigenspaces
are equivalent to HS and can also be used as quantum stabilizer codes because it
is possible to construct the corresponding stabilizer groups by multiplying phase
factors. A K-dimensional q-ary quantum error-correcting code of length n with
distance d is denoted by ((n,K, d))q. A quantum code with distance d can detect
d − 1 errors and hence can correct

⌊
d−1
2

⌋
errors. We define the weight of Ea,b by

the number of non-trivial Ua(i)Vb(i) ’s in Ea,b and denote it by wt(Ea,b). In quantum
stabilizer codes, the distance d becomes the minimum of {wt(Ea,b) : Ea,b ∈ C(S)\S}
where C(S) is the centralizer of S, because the operators in C(S)\S induce nontrivial
automorphisms on HS and thus are non-detectable errors. The order of a stabilizer
group S is the product of the orders of its generators and hence the dimension of HS
equals qn/|S| as in the case of quantum stabilizer codes over finite fields [22] where
|S| is the number of elements of S.

Theorem 2.2. If a quantum stabilizer code HS has parameter ((n,K, d))q, then
K = qn/|S|.

The stabilizer group S is equivalent to a classical code. To see this, let us consider

the quotient group Ē = E/Z where Z =
{

ω
〈a〉q
q I⊗n : a ∈ A

}
is the center of E with

p1p2 · · · pl elements. Then its representatives can be chosen from B and Ē = {Ea,bZ :
Ea,b ∈ B} is isomorphic to a group V = {(a,b) : a,b ∈ An}. The quotient subgroup
S̄ = S/Z of Ē is also a stabilizer group corresponding to the quantum stabilizer code
equivalent to HS , and S̄ is isomorphic to a subgroup C of V which can be regarded
as a classical code. Hence we can identify an element Ea,b of S̄ with an element
(a,b) of a classical code C over A and there is a one-to-one correspondence between
a quantum stabilizer group and a classical code.

When A is a finite field and q = pm, for (a,b) and (c,d) in An×An = (A×A)n

an alternating bilinear form 〈〈(a,b), (c,d)〉〉 ≡ 〈a,d〉 − 〈b, c〉 is called a symplectic
inner product on An×An where 〈a,b〉 =

∑n
i=1

∑l
j=1

∑mj

k=1 aijkbijk is the usual inner
product on An, and we say that a subgroup of V is self-orthogonal with respect to
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the symplectic inner product if it satisfies 〈〈(a,b), (c,d)〉〉 ≡ 0 (mod p). C should be
self-orthogonal with respect to the symplectic inner product by the commutativity
of S [10, 22]. When A is a direct sum of finite fields we need a special form of a
symplectic inner product. We note that operators in E satisfy

Ea,bEc,d = ω−〈b,c〉q
q Ea+c,b+d,

Ea,bEc,d = ω〈a,d〉q−〈b,c〉q
q Ec,dEa,b.

So, multiplication in S̄ corresponds to addition in C and for this reason a quantum
stabilizer code is also called a quantum additive code [11]. Moreover, Ea,b and

Ec,d commute if and only if ω
〈a,d〉q−〈b,c〉q
q = 1. For (a,b) and (c,d) in An × An =

(A×A)n we will define the weighted symplectic inner product 〈〈(a,b), (c,d)〉〉q by
〈a,d〉q−〈b, c〉q modified from a symplectic inner product for a finite field in [10, 22],
and say that a classical code overA×A is self-orthogonal with respect to the weighted
symplectic inner product if it satisfies that 〈〈(a,b), (c,d)〉〉q ≡ 0 (mod p1p2 · · · pl).
After all, we obtain the following result.

Theorem 2.3. There exists a self-orthogonal code C in An×An with respect to the
weighted symplectic inner product if and only if there exists a quantum stabilizer code
HS over A.

Due to the fact that pj’s are all distinct prime, we have one more equivalent
condition to self-orthogonality as shown in the following lemma which can be proved
by the Chinese remainder theorem.

Lemma 2.1. ω
〈〈(a,b),(c,d)〉〉q
q = 1 if and only if 〈〈(a(j),b(j)), (c(j),d(j))〉〉 ≡ 0 (mod pj)

for each j.

Proof. Let us provide a proof through a direct calculation. We have ω
〈〈(a,b),(c,d)〉〉q
q =

ω
Pl

j=1 〈〈(a(j),b(j)),(c(j),d(j))〉〉p̂j

q = ω
Pl

j=1 〈〈(a(j),b(j)),(c(j),d(j))〉〉 ˆ̂pj where ω = e2πι/(p1p2···pl), p̂j =

q/pj and ˆ̂pj = (p1p2 · · · pl)/pj. Thus ω
〈〈(a,b),(c,d)〉〉q
q = 1 if and only if

∑l
j=1〈〈(a(j),b(j)),

(c(j),d(j))〉〉 ˆ̂pj ≡ 0 (mod p1p2 · · · pl) if and only if 〈〈(a(j),b(j)), (c(j),d(j))〉〉 ≡ 0

(mod pj) for each j, because all terms except 〈〈(a(j),b(j)), (c(j),d(j))〉〉 ˆ̂pj have a di-
visor pj.

Suppose that Cj = {(a(j),b(j)) ∈ An
j × An

j : (a,b) ∈ C}. Then Cj is a self-
orthogonal code with respect to the symplectic inner product by Lemma 2.1 and we
obtain the following corollary.

Corollary 2.2. There exists self-orthogonal codes Cj in An
j ×An

j with respect to the
symplectic inner product if and only if there exists a quantum stabilizer code HS over
A.

Let C⊥ = {(a,b) ∈ An × An : 〈〈(a,b), (c,d)〉〉q ≡ 0 (mod p1p2 · · · pl) for all
(c,d) ∈ C} be the dual code of C with respect to the weighted symplectic inner
product. Then, C and C⊥ correspond to the stabilizer group S and its centralizer
C(S), respectively. Thus the minimum weight of the codewords in C⊥ \ C is equal
to the distance of the quantum stabilizer code.
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2.3 CSS Codes

The CSS construction gives a way to construct a quantum code over a Galois field,
which is called a CSS code, from a classical code and its subcode [2, 3, 23, 14].
We generalize the CSS construction over alphabets of arbitrary size by using the
unitary operator basis B in Corollary 2.1. The generalization is straightforward and
so we only sketch the procedure briefly. For classical codes C1 and C2 over A such
that C2 ⊂ C1, the CSS construction over A encodes quantum information to pure
quantum states with equally distributed phases such as |w̄〉 = 1√

qk2

∑
v∈C2

|v + w〉 for

w̄ ∈ C1/C2. Let us suppose that a quantum state |w̄〉 is transformed into UaVb|w̄〉 =
1√
qk2

∑
v∈C2

〈〈b, v+w〉〉|v + w − a〉 by an error UaVb ∈ B. To correct the error caused

by the translation operator, we prepare a unitary transformation T : |a〉D ⊗ |a〉A →
|a〉D⊗|H1a + a〉A where the subscripts D and A denote the quantum systems of the
data register and the ancillary register, respectively, and H1 is a parity check matrix
of C1. To correct errors caused by phase rotation operators, we shift phase errors to
translation errors through the quantum Fourier transformation

⊗l
j=1 QFTn

p
mj
j

and

then perform a unitary transformation T ′ : |a〉D ⊗ |a〉A → |a〉D ⊗ |G2a + a〉A where
G2 is a generator matrix of C2. After all, we can correct translation errors and phase
errors by using H1 and G2, respectively. Thus we obtain the following result.

Theorem 2.4. (CSS Codes) Suppose that C1 is a classical code with parameter
[n, k1, d1]q and C2 is a subcode of C1 with parameter [n, k2, d2]q. Let H1 be an (n −
k1)× n parity check matrix of C1 and G2 be a k2 × n generator matrix of C2. Let C
be the subspace of Hn spanned by an orthonormal set

{
|w̄〉 =

1√
qk2

∑
v∈C2

|v + w〉 : w̄ ∈ C1/C2

}
.

Then C is an [[n, k1 − k2, d = min{d1, d
⊥
2 }]]q quantum code, where d⊥2 is the distance

of the dual code C⊥
2 = {a ∈ An : 〈a,b〉q ≡ 0 (mod p1p2 · · · pl) for all b ∈ C2} of C2.

In Theorem 2.4 the parameters [n, k, d]q and [[n, k, d]]q stand for a k-dimensional
classical code and a qk-dimensional quantum code, respectively, with length n and
distance d. Theorem 2.4 will be used to generate quantum codes from classical codes
over rings as well as over direct sums of finite fields in the subsequent section.

3 QMDS Codes

In this section, we present methods to construct quantum maximum distance separa-
ble codes based on quantum stabilizer codes and CSS codes over composite alphabets.

An (n,K, d)q code meeting the Singleton bound d ≤ n−logq K+1 with equality is
called a maximum distance separable (MDS) code. It means that all of the possible
codewords are as far away, algebraically, as possible in code space. A quantum
analogue of the Singleton bound is K ≤ qn−2d+2 for an ((n,K, d))q code and it is
called the quantum Singleton bound [10]. In binary case, this can be simplified to
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n− k ≥ 2(d− 1) for an [[n, k, d]]2 code [7]. A quantum code saturating the quantum
Singleton bound is called a quantum maximum distance separable (QMDS) code.

Before going into QMDS codes over composite alphabets, we first consider clas-
sical MDS codes over composite alphabets which will be used to construct QMDS
codes by the CSS construction later.

3.1 Classical Coadunate Codes

Error-correcting codes with the the same length over any alphabets can be conjoined
to form a coadunate error-correcting code over the direct sum of their alphabets as
shown in the following lemma.

Lemma 3.1. (Coadunate Code) If there exist an (n, Kj, dj)qj
code Cj over Aj for

j = 1, 2, . . . , l, then there exists an (n,
∏l

j=1 Kj, d)Ql
j=1 qj

code C over
∏l

j=1Aj where

d = min {d1, d2, . . . , dl}.
Proof. We set C = {c = (a1, a2, . . . , an) : ai = (ai1, ai2, . . . , ail) ∈

∏l
j=1Aj and cj =

(a1j, a2j, . . . , anj) ∈ Cj}. We show that the minimum weight of C is d = min{d1, d2,
. . . , dl}. Every codeword of C has weight greater than or equal to d, because for
each j there exists a codeword cj ∈ Cj with wt(cj) = dj. On the other hand, if
d = dj then it is sufficient to find a codeword c of C with wt(c) = dj. If we set
ci = (0, 0, . . . , 0) ∈ Ci for all i 6= j and cj ∈ Cj with wt(cj) = d, then the codeword c
has weight dj obviously. This completes the proof.

For simplicity, we will call C constructed by Lemma 3.1 a coadunate code.
Lemma 3.1 gives a way to construct an MDS code over a composite alphabet by
merging classical MDS codes that have the same code length, dimension and dis-
tance.

Theorem 3.1. (Coadunate MDS Code) Suppose that an (n,
∏l

j=1 Kj, d)Ql
j=1 qj

code

C is constructed by an (n,Kj, dj)qj
code Cj over Aj for j = 1, 2, . . . , l. If C is MDS,

then every Cj is MDS and satisfies that K1 = K2 = · · · = Kl and d1 = d2 = · · · = dl

and vice versa.

Proof. Suppose that C is MDS. By the Singleton bound Kj ≤ q
n−dj+1
j for each

Cj. Since d = min {d1, d2, . . . , dl}, Kj ≤ q
n−dj+1
j ≤ qn−d+1

j and thus
∏l

j=1 Kj ≤∏l
j=1 q

n−dj+1
j ≤ ∏l

j=1 qn−d+1
j . Therefore Kj = q

n−dj+1
j = qn−d+1

j for all j, because

C satisfies
∏l

j=1 Kj =
∏l

j=1 qn−d+1
j . The converse is obvious (See, for example,

[26]).

There are infinitely many MDS codes satisfying the necessary conditions in The-
orem 3.1. Especially, the following families of Reed-Solomon (RS) codes [27, 28] are
easy to comply with these conditions: For a prime number p,

(i) [pm − 1, k, pm − k]pm generalized RS (GRS) codes for 1 ≤ k ≤ pm − 1,

(ii) [pm, k, pm − k + 1]pm extended RS (ERS) codes for 1 ≤ k ≤ pm,
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(iii) [pm + 1, k, pm − k + 2]pm doubly-extended RS (DERS) codes for some 1 ≤ k ≤
pm + 1 [28], and

(iv) [2m + 2, k, 2m − k + 3]2m triply-extended RS (TERS) codes for k = 3, 2m − 1.

From the families of RS codes over Galois fields in (i),(ii),(iii), and (iv), with the same
length, dimension, and distance, regardless of their alphabets, we can construct MDS
codes over the direct sum of Galois fields by Theorem 3.1. The following corollary
shows an example of QMDS codes.

Corollary 3.1. (Coadunate RS Codes) There exists an [n = p
mj

j + aj, k, n − k +

1]Ql
j=1 p

mj
j

code for n such that n = p
mj

j + aj where aj = −1, 0, 1, 2 and pj’s are prime

numbers.

By Corollary 3.1, for example, we obtain a [18 = 24 + 2 = 17 + 1, 3, 16]2417 code
over GF(24)⊕GF(17) from a [18, 3, 16]24 TERS code and a [18, 3, 16]17 DERS code.
Similarly, a [9 = 23 + 1 = 32, 2, 8]3223 code over GF(32)⊕GF(23) is generated from a
[9, 2, 8]32 ERS code and a [9, 2, 8]23 DERS code, and a [26 = 33−1 = 52 +1, 3, 24]3352

code over GF(33)⊕GF(52) is constructed by conjoining a [26, 3, 24]33 GRS code and
a [26, 3, 24]52 DERS code.

There are actually infinitely many families of RS codes satisfying the conditions
in Theorem 3.1. In particular, let us consider a pair (p1, p2) of primes satisfying
n = p1 + a1 = p2 + a2 for given n. When a1− a2 = ±2, this pair of primes is called a
twin prime and in this case there always exists an [n = p1+a1 = p2+a2, k, n−k+1]p1p2

code. There is a conjecture that there exist infinitely many twin primes, which has
not yet been proved. However, it is widely believed that the conjecture is true [29].

3.2 CSS Construction over QMDS Codes

As shown in Theorem 2.4, the CSS construction is a method to construct quantum
error-correcting codes from two classical codes, one of which is a subcode of the other.
To construct QMDS codes through the CSS construction, we need more restriction
on classical codes. The next theorem provides a sufficient condition for the CSS
construction to give QMDS codes.

Theorem 3.2. If there exist two MDS codes, C1 with parameter [n, k1, n−k1+1]q and
C2 with parameter [n, k2, n− k2 + 1]q, satisfying k1 ≥ k2, k1 + k2 = n, and C2 ⊂ C1,
then there exists a QMDS code C with parameter [[n, k1 − k2, (n− k1 + k2 + 2)/2]]q.

Proof. We note that C⊥
2 is also MDS with parameter [n, n − k2, k2 + 1]q. By Theo-

rem 2.4, C has distance d ≥ min{n−k1+1, k2+1} and hence we have d ≥ n−k1+1.
On the other hand, by the quantum Singleton bound, the distance must satisfy
d ≤ n − k1 + 1 = (n − k1 + k2 + 2)/2. Thus we obtain d = n − k1 + 1 and so C is
QMDS.

When C is self-orthogonal, Theorem 3.2 with C1 = C⊥ and C2 = C gives the
following result.
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Corollary 3.2. If there is an [n, k, n− k + 1]q self-orthogonal and MDS code, then
there exists an [[n, n− 2k, k + 1]]q QMDS code whenever 1 ≤ k ≤ n/2.

With the help of Theorem 3.2 and Corollary 3.2 we can construct QMDS codes
systematically from classical codes over composite alphabets, for example, families
of RS codes. Especially, when A = GF(pm), it is possible to construct QMDS
codes from DERS and TERS codes. First, from two DERS codes with parameters
[pm+1, k1, p

m−k1+2]pm and [pm+1, k2, p
m−k2+2]pm where k1 ≥ k2, k1+k2 = pm+1,

and k1−k2 = k, we obtain a [[pm+1, k, (pm−k1+3)/2]]pm quantum doubly-extended
RS (QDERS) code.

Corollary 3.3. There exists a QDERS code with parameter [[pm + 1, k, (pm − k +
3)/2]]pm for 0 ≤ k ≤ pm + 1.

It is possible to obtain QMDS codes with parameters in the above corollary from
cyclic MDS codes with parameters [pm +1, k, pm−k +2]pm for 1 ≤ k ≤ pm +1 in the
same way [15]. Next, there exist two TERS codes with parameters [2m + 2, 3, 2m]2m

and [2m + 2, 2m − 1, 4]2m and from them we also obtain a [[2m + 2, 2m − 4, 4]]2m

quantum triply-extended RS (QTERS) code.

Corollary 3.4. There exists a QTERS code with parameter [[2m + 2, 2m − 4, 4]]2m.

From the CSS construction over finite fields several families of quantum codes
were constructed including quantum Reed-Solomon codes (QRS) [24, 14, 15] and
quantum Reed-Muller (QRM) codes [4, 16] which are derived from RS codes and
Reed-Muller (RM) codes, respectively. Especially, in the previous paper [14], we
defined a series of families QRS codes as follows: We called quantum codes, obtained
from a GRS code and an ERS code, a quantum generalized Reed-Solomon (QGRS)
code and a quantum extended Reed-Solomon (QERS) code, respectively. The above
QDERS codes and QTERS codes are defined in the same way. Theorem 3.2 also
gives [[pm − 1, k, (pm − k + 1)/2]]pm quantum generalized RS (QGRS) codes and
[[pm, k, (pm − k + 2)/2]]pm quantum extended RS (QERS) codes in [15, 14].

In addition to RS codes, RM codes can also be used in the construction of QMDS
codes. Recently, quantum RM codes over finite fields, which are also QMDS, were
introduced in [16].

We can also apply Theorem 3.2 to RS codes over composite alphabets as in the
following corollary.

Corollary 3.5. (QMDS Codes by Coadunate RS Codes) If there exist n such that
n = p

mj

j + aj where aj = −1, 0, 1, 2 and pj’s are primes for j = 1, 2, . . . , l, then there

exists a QMDS code with parameter [[n = p
mj

j + aj, k, (n− k + 2)/2]]Ql
j=1 p

mj
j

code.

Proof. Consider two coadunate RS codes with parameters [[n = p
mj

j + aj, k1, (n −
k1 + 2)/2]]Ql

j=1 p
mj
j

and [[n = p
mj

j + aj, k2, (n − k2 + 2)/2]]Ql
j=1 p

mj
j

for k1 > k2. If

k1 + k2 = n and k1 − k2 = k, then by Theorem 3.2 we obtain an [[n = p
mj

j +
aj, k, (n− k + 2)/2]]Ql

j=1 p
mj
j

quantum RS code.

By the same argument as that in the last paragraph of Section 3.1, we can obtain
infinitely many QMDS codes through Corollary 3.5.
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3.3 Quantum Coadunate MDS Codes

From now on we will deal with a method to conjoin QMDS codes over any alphabets
into a QMDS code over direct sum of the alphabets.

Quantum codes with the same length can be linked together to bring in a quantum
coadunate code over a composite alphabet. The following lemma is a quantum
analogue of Lemma 3.1, and is an extension of the result in [10] where a quantum
error-correcting code over a composite alphabet is obtained from quantum codes
with the same length and distance.

Lemma 3.2. (Quantum Coadunate Code) If there exist ((n,Kj, dj))qj
codes over qj-

dimensional systems for j = 1, 2, . . . , l, then there also exists an ((n,
∏l

j=1 Kj, d))Ql
j=1 qj

code where d = min {d1, d2, . . . , dl}.
We next state a necessary and sufficient condition for a quantum coadunate code

to be MDS, which is a quantum version of Theorem 3.1 and can be proved in a
similar way to Theorem 3.1.

Theorem 3.3. (Quantum Coadunate MDS Code) Suppose that an ((n,
∏l

j=1 Kj, d))Ql
j=1 qj

code C is constructed by ((n,Kj, dj))qj
codes Cj over Aj for j = 1, 2, . . . , l. C is

QMDS if and only if Cj codes are all QMDS and satisfy that K1 = K2 = · · · = Kl

and d1 = d2 = · · · = dl.

QMDS codes over finite fields satisfying the assumptions in Theorem 3.3 can
combine to form a QMDS code over a composite alphabet. Up to now several families
of QMDS codes over Galois fields have been developed and are listed in Table 1. By
joining QMDS codes in Table 1 together we can obtain new classes of QMDS codes
some examples of which are listed in Table 2. QMDS codes with parameters (A) are
CSS codes constructed by DERS and TERS codes in Section 3.2, and they belong
to the family of quantum RS codes with parameters (L). All but quantum codes
with parameters (A) are QMDS codes over the direct sum of finite fields and are
obtained by applying Theorem 3.3 to QMDS codes with parameters in Table 1 and
with parameters (A) in Table 2. Especially, QMDS codes with parameters (B), (C),
(D), and (E) are constructed by merging quantum codes with parameter (a), (c), (d),
and (e) with themselves, respectively. QMDS codes with the rest parameters are the
joints of heterogeneous QMDS codes. In a detail account, quantum coadunate codes
with parameters (L) are obtained by conjoining quantum RS codes with parameters
(f) and (A) such that n = p

mj

j + aj for j = 1, 2, . . . , l. We remark that these
coadunate codes are equivalent to CSS codes obtained from classical coadunate RS
codes in Corollary 3.5. As explained in the last paragraph of Section 3.1, one can find
infinitely many families of quantum coadunate RS codes satisfying the conditions in
Theorem 3.3. Quantum RM codes together with quantum RS codes permit wider
range of code lengths as shown in parameters (K). We note that although QMDS
codes with parameters (F),(G),(H), and (I) defined over alphabets, the sizes of which
are powers of primes, they are not defined over finite fields.
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Table 1: Parameters in previous QMDS codes

Index Parameters
[[n, n, 1]]2 for n ≥ 1,

(a) [[n, n− 2, 2]]2 for even n,
[[5, 1, 3]]2, and
[[6, 0, 4]]2 in [11]

(b) [[5, 1, 3]]q for a positive integer q in [12]
(c) [[p2m + 1, p2m − 3, 3]]pm and

[[p2m, p2m − 4, 3]]pm in [13]
(d) [[n, k, (n− k + 2)/2]]pm for 3 ≤ n ≤ pm and

[[p2m − s, k, (p2m − s− k + 2)/2]]pm for some s and 1 ≤ d ≤ pm in [15]
(e) [[p2m, p2m − 2ν − 2, ν + 2]]pm and

[[(ν + 1)pm, (ν + 1)pm − 2ν − 2, ν + 2]]pm for 0 ≤ ν ≤ pm − 2 in [16]
(f) [[pm − 1, k, (pm + 1− k)/2]]pm and

[[pm, k, (pm + 2− k)/2]]pm in [14]

3.4 Quantum Puncturing and Shortening

The lengths of most error-correcting codes over finite fields are restricted depending
on the sizes of alphabets. As a partial solution to this problem, there exist two
methods quantum puncturing [10] and shortening [8] over finite fields which enable
us to construct quantum stabilizer codes with shortened lengths. Especially, if a
QMDS code is given, then we can obtain QMDS codes with shortened lengths by
using the methods. We will show that it is possible to extend these methods over
composite alphabets.

First, let us explain quantum puncturing over composite alphabets in short. Let
C ⊂ (A×A)n be of length n and dimension n−k code such that C⊥ has the distance
d. For any pair, (a,b) and (c,d) in C, we define a vector in An by {(a,b), (c,d)} =
(〈〈(a(1),b(1)), (c(1),d(1))〉〉q, 〈〈(a(2),b(2)), (c(2),d(2))〉〉q, . . . , 〈〈(a(n),b(n)), (c(n),d(n))〉〉q)
where 〈〈(a(i),b(i)), (c(i),d(i))〉〉q =

∑l
j=1

∑mj

k=1(aijkdijk − bijkcijk)p̂j. The puncture
code P (C) of C is defined by the dual code of the code generated by all {(a,b), (c,d)}
with respect to the usual inner product on An. If there exists a codeword in P (C)
that has n− s components, each of which consists of non-zero elements, then there
exists a stabilizer code C with parameter [[n − s, k′ − s, d′]]q for k′ ≥ k and d′ ≥ d.
If C corresponds to a QMDS code with parameter [[n, k, d]]q, then C is also an
[[n− s, k − s, d]]q QMDS code by the Singleton bound.

On the other hand, quantum shortening is carried out by removing a column
containing two non-commutative operators and the corresponding two rows in a
generator matrix of a stabilizer group. If a generator matrix of a stabilizer group of
an [[n, k, d]]q QMDS code has a column containing two non-commutative elements,
then there also exists a QMDS code with parameter [[n− 1, k + 1, d− 1]]q.

Whereas quantum puncturing is bound to preserve the code distance and lower
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Table 2: Some examples of parameters in new QMDS codes; Indices in the construc-
tion column mean the parameters of quantum codes conjoined into QMDS codes over
composite alphabets. For example, (e)+(A) means that a QMDS code is constructed
from QMDS codes with parameter (e) in Table 1 and QMDS codes with parameter
(A) in this table.

Index Construction Parameter
(A) DERS [[pm + 1, k, (pm + 3− k)/2]]pm (QDERS codes)

TERS [[2m + 2, 2m − 4, 4]]2m (QTERS codes)
[[n, n, 1]]2m for n ≥ 1,

(B) (a)+(a) [[n, n− 2, 2]]2m for even n, and
[[6, 0, 4]]2m

(C) (c)+(c) [[p2c + a, p2c + a− 4, 3]]pm for a = 0, 1 and c|m
(D) (d)+(d) [[p2c − s, p2c − s− 2d + 2, d]]pm

for some s, 1 ≤ d ≤ pc, and c|m
(E) (e)+(e) [[p2c, p2c − 2ν − 2, ν + 2]]pm and

[[(ν + 1)pc, (ν + 1)pc − 2ν − 2, ν + 2]]pm

for 0 ≤ ν ≤ pc − 2 and c|m
(F) (e)+(f) [[p(m+c)/2, p(m+c)/2 − 2pc, pc + 1]]pm for 0 ≤ c ≤ m/3

(G) (c)+(f) [[p2m/3, p2m/3 − 4, 3]]pm

(H) (c)+(A) [[p2m/3 + 1, p2m/3 − 3, 3]]pm

(I) (d)+(f) or [[p2m/3 − s, k, (p2m/3 − s− k + 2)/2]]pm for some s ≥ 0 and
(d)+(A) [[pc + a, k, (pc + a− k + 2)/2]]pm for 2c ≤ m and a = −1, 0, 1, 2

(J) (c)+(e) [[n = p2m1
1 + 1 = (ν + 1)pm2

2 , k, (n− k + 2)/2]]pm1
1 p

m2
2

for 0 ≤ ν ≤ pm2
2 − 2

(K) (e)+(f) or [[n = (ν + 1)pm1
1 = pm2

2 + a, k, (n− k + 2)/2]]pm1
1 p

m2
2

(e)+(A) for 0 ≤ ν ≤ pm1
1 − 2 and a = −1, 0, 1, 2

(L) (f)+(A) [[n = p
mj

j + aj, k, (n− k + 2)/2]]Ql
j=1 p

mj
j

for aj = −1, 0, 1, 2 and prime pj
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the code dimension, quantum shortening shortens the code distance and makes higher
dimensional QMDS codes than original ones. That is, although both of them derive
QMDS codes with shortened lengths, the former pursues the correction of more errors
and the latter pursues the efficiency of sources.

In classical error-correcting codes, MDS codes with shortened length n′ satisfying
d ≤ n′ ≤ n can always be constructed from an [n, k, d] MDS code [27]. However,
quantum puncturing and shortening do not guarantee the existence of QMDS codes
for all shortened lengths because the orthogonality with respect to the weighted
symplectic inner product should be preserved. In the last section, we presented a
practical method to merge QMDS codes over finite fields into QMDS codes over
direct sums of finite fields and this method guarantees QMDS codes over alphabets
of size pm with shortened lengths. Thus the conjoining method can be another
complementary solution to construct QMDS codes with shortened lengths, as shown
in Table 2.

4 Conclusion

In this paper, we diversified not only the dimension of quantum system applicable
to quantum error-correcting codes, but also broadened the range of lengths of quan-
tum codes for given sizes of alphabets by constructing quantum coadunate codes .
To deal with quantum codes over composite alphabets, we identified alphabets with
commutative rings instead of the conventional finite fields. Based on the ring struc-
ture of an alphabet, we constructed a unitary operator basis and then generalized
the non-binary quantum stabilizer construction and extended the CSS construction.
Especially, self-orthogonal classical codes with respect to the weighted inner prod-
uct represent quantum stabilizer codes. Moreover, we used the coadunate method
to construct error-correcting codes over composite alphabets and presented a neces-
sary and sufficient condition for coadunate codes to be MDS. Under this condition,
we could compose infinitely many families of MDS and QMDS codes over alpha-
bets of arbitrary size. Especially, by the CSS construction we constructed quantum
coadunate RS (and MDS) codes including QDERS and QTERS codes.
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